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Abstract. We introduce a novel instance selection method, which in-
tegrates FINCH and the K-means clustering algorithms into a unified
process for improved instance selection. Initially, FINCH is employed to
perform a first dataset clustering. Representatives of the resulting clus-
ters are used as seeds for K-means to refine clustering. The samples that
are closer to the centers of the tuned clusters form the set of selected in-
stances. Our experiments show that our method outperforms established
instance selection techniques. We also showcase the practical benefits of
our approach by applying it to reduce the size of augmented training
datasets in a case-study that involves ship detection in aerial and satel-
lite images. The results demonstrate that our method leads to significant
dataset size reduction with minimal impact on ship detection accuracy.

Keywords: Dataset Distillation · Instance Selection · FINCH · K-means

1 Introduction

In the era of big data and deep learning, the computational and storage require-
ments of neural networks are proportional to the size of the datasets used for
their training. As datasets are becoming increasingly larger [23,29], it is highly
important to be able to select subsets of them that, despite their reduced size,
consist of representative training instances/examples that can support accurate
training. In that direction, methods from the research fields of dataset distil-
lation [38,44] have emerged as essential preprocessing steps in a wide range of
machine learning and classification tasks.

Instance selection is a particular form of data distillation [39,27,28,26] that
aims to preserve informative samples that accurately represent the original dataset,
while eliminating redundant or irrelevant data. By decreasing the dataset size,
instance selection algorithms reduce runtime during both the classification and
training stages. Instance selection seeks for the smallest subset of a training
dataset that does not compromise training accuracy. At the same time, instance
selection itself needs to be computationally efficient. Currently, no instance se-
lection algorithm is a clear winner in all these fronts. Therefore, searching for
robust, effective and efficient approaches to instance selection remains an active
area of research.
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In this work, we present a new approach to the problem of instance selec-
tion. The proposed algorithm capitalizes on a careful integration of two widely
accepted clustering algorithms, FINCH [30] and K-means [25]. Specifically, a
variant of the FINCH algorithm is initially employed on an input dataset to
perform a preliminary clustering of the data. Representatives of these clusters
initialize a variant of K-means that refines them. Finally, the dataset instances
that are closer to the cluster centers as those are determined by K-means, are
declared as the selected dataset instances.

A number of experiments were performed to evaluate variants of the proposed
instance selection mechanism on six different standard datasets in different do-
mains. These datasets differ with respect to important characteristics such as
their number of classes, the number of samples and their dimensionality, etc.
The evaluation is performed on the basis of three criteria, (a) number of selected
samples, (b) classification accuracy when training with the selected instances
and (c) running time of the instance selection algorithm. We also compare the
proposed variants with several established top-performing instance selection al-
gorithms. The comparison is performed on the basis of each of the above criteria,
but also on the basis of a new criterion that aggregates them into a single metric.
The obtained results demonstrate that the proposed solutions outperform the
existing algorithms in the great majority of tests and datasets.

Overall, the contributions of this work can be summarized as follows:

– We introduce a novel algorithm for instance selection that integrates variants
of FINCH and K-means.

– We evaluate thoroughly the proposed instance selection approach on varied
datasets and in comparison with existing instance selection algorithms. The
results show that the proposed algorithms offer the best balance of running
time, number of selected instances, and achieved classification accuracy.

– We illustrate the practical advantages of the proposed instance selection
approach in augmented dataset size reduction, demonstrating experimentally
that it achieves significant reductions with minimal loss in model accuracy.

2 Related Work

General methods for instance selection: Instance selection algorithms have
a long-standing history. Based on the instance selection strategy that they follow,
they can be classified into three main categories: (a) condensation, (b) edition
and (c) hybrid methods [13,4]. Condensation-based algorithms aim to retain the
instances that are closer to the decision boundaries. Since border instances are
usually fewer than internal ones, these methods often achieve significant reduc-
tion; however, sometimes this may have a negative impact on the classification
accuracy. Edition-based algorithms focus on discarding noisy instances or in-
stances that do not align with their neighbors, resulting in the removal of border
instances and the retention of internal ones, which may not necessarily con-
tribute to classification accuracy. Thus, these methods typically achieve a low
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reduction rate. Finally, hybrid algorithms allow for the retention of both border
and internal instances.

One of the first and widely explored condensation-based algorithms is the
Condensed Nearest Neighbor (CNN) [16] algorithm, based on the Nearest Neigh-
bor (NN) [9] method. The initial step of CNN is to randomly select one instance
from each class of the training set, TS, and put them in a subset, S. Next,
each instance in TS is classified using only the instances in S. If an instance is
misclassified, it is added to S, ensuring that all instances in TS are classified
correctly. According to this criterion, noisy instances are likely to be retained
because they are commonly misclassified by their k-NN. Based on this criterion,
CNN may include noisy instances in S, which may affect classification accuracy.

The Edited Nearest Neighbor (ENN) [40] method is perhaps one of the first
edition methods. In comparison to CNN, ENN begins with S = TS and removes
noisy and border instances from S. An instance is discarded when its class differs
from the majority class among its k nearest neighbors. ENN retains instances
that are more centrally located within their respective classes, aiming to cre-
ate smoother, more distinct boundaries among different classes. The Repeated
ENN (RENN) [34] is an extension of ENN that repeatedly applies ENN until
all instances in S belong to the same class as the majority of their k Nearest
Neighbors. This iterative procedure results in an even wider gap between classes.

A more recent edition-based method, the Local Density-based Instance Se-
lection (LDIS) [8] algorithm exhibits relatively low time complexity and is one
of the most popular density-based algorithms in the literature [26]. The algo-
rithm independently analyzes each class by computing local density, identifying
local nearest neighbors, and retaining only the densest instances from each class.
XLDIS [7], an extension of LDIS, selects instances with the highest local den-
sity ordering (LDO) in their neighborhood, analyzing them in descending LDO
order. To reduce processing time, XLDIS maintains a list of instances excluded
from further analysis for inclusion in the final set. Finally, the Local Set-based
Smoother (LSSm) [21] is an edition-based algorithm that removes instances when
their harmfulness outweighs their usefulness. Although the method achieves high
accuracy, it does not significantly reduce the number of instances.

Hybrid methods include, IB3 [2], an early well-known approach that retains
effective classifiers while discarding noisy instances by tracking their correct and
incorrect classifications. In similar design to IB3, Wilson et al. [39] introduced a
set of five methods which are based on the Decremental Reduction Optimization
Procedure (DROP). DROP methods are based on the concept of associates.
According to [27], DROP3 is the most widely recognized variant as it outperforms
several well-known previous methods in both classification and dataset reduction.
DROP3 first filters out noisy instances and then discards any instance that can be
correctly classified without its associates. However, the iterative k-neighborhood
search to decide on removal leads to high computational cost. [8].

The more recent Clustering-based Instance Selection (CIS) algorithm [28]
is a hybrid instance selection method that initially employs the unsupervised
K-means clustering algorithm to identify clusters within the training instances,
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given predefined cluster number and selection rate values. The algorithm then
selects instances from both cluster centers and borders using distance-based
measures. Central instances represent core cluster characteristics, while border
instances protect clusters from each other. The key drawback of this method is
the need to pre-determine the number of clusters.

In [36] the authors introduced a novel hybrid under-sampling approach called
cluster-based instance selection (CBIS). The CBIS method combines clustering
analysis with three well-known instance selection algorithms (IB3, DROP3, Ge-
netic Algorithm [6]). As a clustering method, the CBIS employs the Affinity
Propagation (AP) [12] algorithm, which has the advantage of not requiring a
predetermined number of clusters. However, calculating the similarity between
all samples, results in increased computational cost as the dataset size grows.

Instance selection in computer vision datasets: Although many of the
aforementioned methods have been extensively applied to real datasets across
various domains, research on instance selection methods in the field of computer
vision remains relatively limited [19,3,35,5]. For example, in [19], the authors
suggest the concept of a training value, according to which a classifier is trained
using one particular positive example along with all the negative examples. The
average performance of the classifier across the training set defines the training
value of an example. The algorithm selects the most valuable training examples
by using a greedy forward method, which incrementally includes examples from a
ranked list based on their training value. In [3], the authors introduce a Random
Mutation Hill Climbing (RMHC) [33] based method. Here, the authors modified
the RMHC algorithm to reduce its computational cost, computing the accuracy
only for neighboring instances affected by adding or removing an instance.

3 Proposed Method

Our method integrates the strengths of FINCH [30] and K-means [25] algorithms.
In a first step, a novel modified version of FINCH is employed to automatically
determine a number of clusters in data. In a second step, these clusters are refined
using the K-means algorithm. Finally, the samples that are most similar to the
refined cluster centers are selected to constitute the final proposed instances.

3.1 Class Membership-aware FINCH

FINCH (First Integer Neighbor Clustering Hierarchy) [30] is an agglomerative
clustering method that follows the first nearest neighbor clustering principle. It
operates hierarchically, progressively merging data points into clusters based on
their similarity to their closest nearest neighbor. Initially, each data point is con-
sidered as a cluster. The algorithm then iteratively merges clusters by examining
their first nearest neighbor, repeating this process until no further merges are
possible. FINCH is efficient (has a computational complexity of O(Nlog(N))),
and allows the generation of a series of partitions, each representing a differ-
ent level in the clustering hierarchy. These partitions enable exploration of the
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data at various levels of granularity (fine to coarse), making FINCH particularly
suitable for tasks requiring multi-level data analysis and exploration.

Due to its unsupervised and class-agnostic nature, FINCH may struggle to
accurately discriminate between samples with similar characteristics belonging
to different classes, particularly in borderline or edge cases. These cases are cru-
cial for instance selection, as the goal is to maximize classification performance
while minimizing the amount of data used. However, the class labels of training
sets are already available as ground truth in the datasets used to train neural
networks. Therefore, we incorporate this knowledge of class membership into the
clustering process. In more detail, we propose two design approaches to achieve
this: (a) applying FINCH to the data points of each class independently (Class-
wise FINCH, CW-FINCH), and (b) enforcing class purity during the merging
process across the entire dataset (Class-Purity FINCH, CP-FINCH).

CW-FINCH: In order to integrate class-specific homogeneity into the outcomes
of FINCH, we investigate the feasibility of applying it separately to each class.
This approach involves assessing the partitions generated and selectively pre-
serving clusters from FINCH partition 0, which encapsulate the most coherent
and tight groupings within each class. As a result, the final outcome of this mod-
ified methodology comprises the amalgamation of partition 0 clusters obtained
from applying FINCH to each class individually. Formally, the union CCW of
partition 0 clusters across all classes is defined as:

CCW =
⋃
i

C
(0)
i , (1)

where C
(0)
i = {ci,1, ci,2, ..., ci,M} denote the set of clusters in partition 0, obtained

by applying the FINCH algorithm to the samples of class i from the original
dataset which results in M clusters for the samples of this class (ci,j is the jth
cluster, 1 ≤ j ≤ M , of the ith class of the dataset).

CP-FINCH: Enforcing class purity during the merging process of FINCH facil-
itates improved class distinction by ensuring that clusters remain homogeneous
with respect to class labels, thereby supporting the accurate identification of rep-
resentative instances. To achieve our objective, we initially apply FINCH to the
entire dataset, focusing specifically on the first partition generated by FINCH,
which represents a single merging process capturing the primary cluster struc-
tures in the data. This decision is grounded on the observation that the initial
partitioning phase of FINCH (partition 0) identifies the most prominent cluster
patterns, forming a sturdy basis for subsequent instance selection. As FINCH
progresses through additional partitions, the merging processes lead to centroids
that progressively abstract away detailed data characteristics, potentially dimin-
ishing cluster specificity. We denote as C(0) = {c1, c2, ..., cK}, the set containing
the derived clusters, ci, from the partition 0 of FINCH, with K referring to the
number of clusters that FINCH identified. Each data point x ∈ Rd is assigned to
(a) a class label y(x) ∈ {1, 2, . . . , L}, and (b) a cluster ci, i ∈ {1, 2, . . . ,K}. For
each cluster ci, we identify outlier elements as the samples whose class label y(x)
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differs from the majority class label ymaj(ci) within the cluster. The majority
class label for cluster ci is given by:

ymaj(ci) = arg max
l∈{1,...,L}

∑
x∈ci

I(y(x) = l), (2)

where I(·) is the indicator function. The set Oi of outliers of cluster ci is:

Oi = {x ∈ ci | y(x) ̸= ymaj(ci)}. (3)

These outliers are then extracted to form new, distinct clusters. Specifically, if
multiple outlier elements share the same class identity y(x), they are aggregated
into a singular new cluster. Let Nj denote a new cluster formed by aggregating
outliers with the same class label l:

Nj = {x ∈ Oi | y(x) = l with l ∈ {1, . . . , L}}. (4)

The set of clusters CCP for partition 0 is constructed by removing the outliers
from the initial clusters and incorporating the newly formed clusters Nj :

CCP =

(
K⋃
i=1

(ci \ Oi)

)
∪

⋃
j

Nj

 . (5)

This refined clustering, CCP ensures higher class purity, which facilitates in more
accurate and meaningful data representation.

3.2 Integrating the modified FINCH with K-means

K-means is a widely used non-hierachical clustering algorithm characterized by
its simplicity and effectiveness in partitioning a dataset into a given number
k of distinct clusters. The process begins by randomly selecting k initial data
points as the starting cluster centroids. Subsequently, each data point is assigned
to the nearest centroid, forming clusters. The centroids are then recalculated
as the mean of all points in their respective clusters. This iterative process of
assignment and centroid recalculation continues until convergence. Despite its
popularity, it is sensitive to the initial selection of centroids [32], which can lead
to suboptimal clustering and poor convergence, particularly in the presence of
complex data distributions or outliers.

To address the limitations of K-means initialization (knowledge of k, sen-
sitivity to centroid initialization), we exploit the proposed FINCH variants to
initialize K-means and obtain more informed and strategically placed initial cen-
troids that reflect the inherent structure of the data. Specifically, the K-means
is initialized with the centers of the clusters, as those were identified by the two
FINCH variants (CCW by CW-FINCH or CCP by CP-FINCH).

To perform instance selection, we utilize the final centroids obtained upon
convergence of the K-means algorithm. Specifically, we select samples that are
closest to these final centroids, as these samples are considered representative
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of their respective clusters. The similarity metric employed is the Euclidean
distance between data points and the centroids. In essence, upon convergence,
for each cluster j, we identify the data point xi that minimizes the Euclidean
distance, d(xi, cj), to the centroid cj :

xsel,j = argmin
xi∈cluster j

d(xi, cj). (6)

We identify two instance selection variants, (a) KM-Fcw, and (b) KM-Fcp

depending on whether K-means is applied to CCW or CCP , respectively.

4 Experimental Setup

We demonstrate the robustness and potential benefits of the proposed instance
selection method in assisting neural network models to achieve high performance
with minimal data. Our evaluation spans a variety of domains, including biolog-
ical data and image datasets depicting digits, objects, and animals, highlighting
the versatility and applicability of our approach in various real-world scenarios.

We conduct experiments to benchmark the proposed instance selection ap-
proach against top-performing competitors that share similar design principles,
and also demonstrate how the proposed variants further increase performance.

4.1 Datasets

We tested the method in three image (MNIST 28x28, CIFAR-10, CALTECH-
101) and three biological data-centered dataset (Wine, Iris, Breast Cancer). For
the image datasets, the images are flattened into 1-dimensional vectors to serve
as data samples for the instance selection process. Conversely, for the biological
datasets, the provided feature vectors are directly utilized in their existing form.

With respect to dataset splits, we diverge from the conventional approach
commonly adopted in the literature by employing a stratified split scheme. We
report the used split ratios at the end of each dataset description.

Wine Dataset [1]: is a multivariate dataset consisting of attributes depicting
the chemical properties of wines. It comprises 178 instances of wine samples, each
described by 13 attributes, such as alcohol content, malic acid, etc. The task is
to classify the wines into 3 categories corresponding to different cultivars. For
Wine we follow a 90-10 train/test split leading to 168 train & 18 test samples.

Iris Dataset [11]: consists of 150 instances of iris flowers, with each instance
described by four continuous attributes: sepal length, sepal width, petal length,
and petal width, measured in centimeters. These attributes are used to classify
the flowers into three species: Iris setosa, Iris versicolor, and Iris virginica, with
each species containing 50 samples. We follow a 90-10 train/test split for this
dataset, amounting in 135 train and 15 test samples.

Breast Cancer Wisconsin [41]: comprises of 569 instances of breast cancer
cases, each described by 30 continuous attributes derived from digitized images
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of fine needle aspirate (FNA) of breast masses. It supports binary classification
with the samples labeled to indicate whether the tumor is malignant or benign.
For this dataset we follow a 90-10 train/test split (512 train, 57 test samples).

MNIST 28x28: is a subset of the original MNIST dataset [20], designed for digit
recognition tasks. It contains 70,000 grayscale images of handwritten digits, each
image sampled to a 28x28 pixel resolution, resulting in 784 features per image.
Each image represents one of the digits from 0 to 9, with the original dataset
being balanced across the 10 classes. For MNIST 28x28, we follow a 70-20-10
train/val/test split scheme to construct an unbalanced variant.

CIFAR-10 [18]: consists of 60,000 color images divided into ten distinct classes.
Each image is of size 32x32 pixels. The ten classes include airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. For CIFAR-10, we follow
a 60-20-20 train/val/test split scheme.

CALTECH-101 [10]: containing 9,146 images categorized into 101 distinct ob-
ject classes and one additional background class. Each object class contains be-
tween 40 to 800 images, with most classes containing around 50 images. The im-
ages vary in size, however, for our experiments we resize all images to a 200x300
resolution. We follow a 70-30 train/test split for this dataset.

4.2 Baseline Methods & Classifiers

Methods: We compare the proposed variants of FINCH with other prominent
instance selection methods, representative of the basic categories of existing in-
stance selection methods. Specifically, we include edition (ENN [40], RENN [34],
LSSm [21], LDIS [8], XLDIS [7]), condensation (CNN [16], AP [12]), and hy-
brid (DROP3 [39], IB3 [2]) methods. Classification Models: To evaluate the
quality of the selected instances of each method in each dataset, we trained
classification models specific to each dataset. For the MNIST and CIFAR-10
datasets, we employed a lightweight convolutional neural network. The network
was trained for {10 epochs MNIST, 20 epochs CIFAR-10} with a batch size of
64, using the Adam optimizer (learning rate: 0.001). In contrast, for the Iris,
Wine, Breast Cancer, and CALTECH-101 datasets, we utilized a Support Vec-
tor Machine (SVM) classifier with a linear kernel. In all cases, the models were
trained exclusively on the selected instances and evaluated on the test set.

4.3 Evaluation metrics

We assess the methods based on three key performance criteria: (a) classification
accuracy A when training is performed on the reduced dataset resulting from
instance selection, (b) Running time T of the instance selection algorithm, and,
(c) number of instances I selected by the algorithm. We provide two different
rankings of the methods, (a) Criterion-based ranking and (b) Total ranking.

Criterion-based ranking: This ranking evaluates each method against an in-
dividual criterion (A, T , I) in all employed datasets. Initially, we rank each
method according to each criterion within each dataset. Then, we aggregate
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[Top-1 Accuracy A (%) — Rank ] per method, per dataset

Method Wine Iris B.C. MNIST CIFAR10 CTECH RA

RENN [34] 100.00 1 100.00 1 92.98 1 98.76 1 48.67 8 34.88 7 2
ENN [40] 100.00 1 100.00 1 91.23 2 98.76 1 48.67 8 34.88 7 3
LSSm [21] 100.00 1 100.00 1 89.47 6 98.36 3 70.14 1 46.50 1 1
XLDIS [7] 94.44 7 86.67 10 91.23 2 95.11 11 25.95 12 31.20 10 10
LDIS [8] 88.89 11 86.67 10 89.47 6 95.93 10 26.15 11 31.16 11 12
IB3 [2] 94.44 7 93.33 8 89.47 6 97.61 5 67.88 2 44.93 2 6
CNN [16] 94.44 7 93.33 8 89.47 6 96.07 9 63.83 3 35.79 6 9
DROP3 [39] 94.44 7 100.0 1 87.72 10 96.24 8 53.65 4 35.90 5 8
AP [12] 88.89 11 86.67 10 91.23 2 95.03 12 36.55 10 27.15 12 10

FINCH [30] 100.00 1 100.00 1 87.72 10 97.24 7 49.46 7 32.73 9 7
KM-Fcw 100.00 1 100.00 1 91.23 2 97.74 4 53.01 6 36.01 4 4
KM-Fcp 100.00 1 100.00 1 85.96 12 97.54 6 57.65 4 41.11 3 6

Table 1. Evaluation of test accuracy of the methods across all considered datasets.
B.C. is an abbreviation for the Breast Cancer dataset and CTECH for CALTECH-101.
RA refers to the accuracy ranking aggregated over all datasets via averaging.

these rankings to determine the performance on that criterion across all datasets
by computing the average ranking. This results in the rankings RA, RT and RI

of a certain method with respect to A, T and I, respectively, across all datasets.

Total ranking: Holistic ranking aims at evaluating the best algorithm by con-
sidering all criteria, simultaneously. To do so, we compute a normalized aggre-
gation function that scores a method over all three criteria on each dataset.
Specifically, given a criterion X ∈ {A, T, I}, and a dataset, we first perform min-
max normalization of the scores of the method i with respect to that criterion
so that its normalized value XN is brought in the range [0, 1]:

XN =
X −Xmin

Xmax −Xmin
. (7)

In equation 7, X is the score of a method in a dataset and Xmin, Xmax the
minimum and maximum scores of all methods on this dataset, respectively. The
total score S of a method is defined based on the following aggregation function:

S = exp ([AN + (1− TN ) + (1− IN )]− 3). (8)

S increases with normalized accuracy, and decreases with normalized running
time and normalized number of instances. Subtraction of 3 in the exponential
normalizes S in the range [0, 1]. Using the normalized scores guarantees that the
three criteria contribute equally to the total score S, implementing the default
choice of all of them being considered equally important. If not, equation 8 can be
adjusted appropriately by adopting a proper weighting scheme. More elaborate
multi-criteria ranking methods can be used (e.g., the Condorcet method [37])
but such an investigation is beyond the scope of this paper. Finally, all methods
are ranked according to S, giving rise to their total ranking RS .
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5 Experimental Results

We evaluate the proposed instance selection framework by first considering each
criterion individually in Section 5.1, followed by total ranking results in Sec-
tion 5.2. Finally, Section 5.3 presents a case study showing how the proposed
instance selection method significantly reduces the training dataset size for a
ship detector with minimal impact on detection accuracy.

5.1 Performance evaluation on individual criteria

Classification Accuracy A: Table 1 presents the top-1 accuracy A of a clas-
sifier when trained on datasets (columns) where instance selection is applied
based on a variety of algorithms (rows). In the table, B.C. is an abbreviation for
the Breast Cancer dataset and CTECH for CALTECH-101. The last three rows
show the performance of FINCH alone, as well as of the two proposed variants
KM-Fcw, KM-Fcp. Besides accuracy, the table also reports the ranking of each
algorithm per dataset. The last column of the table presents the ranking RA

with respect to accuracy of all algorithms over all datasets. We can observe that
KM-Fcw consistently performs at a high level, achieving the highest ranks in the
Wine and Iris datasets and maintaining competitive ranking across MNIST and
CIFAR10. Its aggregate rank of 4 underscores its overall robustness and relia-
bility compared to other methods such as RENN and LSSm, which, while also
performing well, exhibit lower ranks on more complex datasets like CIFAR10.
KM-Fcp similarly excels in the Wine and Iris datasets but shows low performance
on the Breast Cancer dataset, leading to a slightly lower aggregate rank of 6.
This variability highlights its less consistent performance across diverse datasets
compared to KM-Fcw. FINCH, while competitive with an aggregate rank of 7,
demonstrates high accuracy in simpler datasets and maintains a balanced perfor-
mance across others. Despite its lower performance in the Breast Cancer dataset,
FINCH remains effective but does not surpass KM-Fcw in overall consistency.

Number of selected instances I: In Table 2 we present the number of selected
instances for each method across the examined datasets. KM-Fcw provides sub-
stantial reductions in instance selection (mean reduction is ≥ 80%), particularly
in image datasets. KM-Fcp, while effective, shows slightly less effectiveness, with
a mean reduction of 77% across all datasets. Comparatively, methods like XLDIS
and LDIS achieve the highest reduction, with mean reductions of 95% and 93%,
respectively. Other methods, such as IB3, CNN, and DROP3, show moderate
effectiveness with mean reductions ranging from 80% to 90%, but exhibit in-
consistency across different datasets. Lower-performing methods (RENN, ENN,
LSSm) select a larger number of instances, resulting in lower reductions.

Overall, the results indicate that KM-Fcw lies in the above average range
in terms of instance selection efficiency across diverse datasets. Its performance
is constant across both biological and image datasets indicating that it can be
considered as a reliable data reduction choice for diverse domains.

Execution Time T : The results in Table 3 provide a detailed comparison of
execution times across various instance selection methods. KM-Fcw and KM-
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[ Selected samples I — Rank ] per method, per dataset

Method Wine) Iris B.C. MNIST CIFAR10 CTECH RI

(160) (135) (512) (48k) (35k) (6.4k)

RENN [34] 140 10 115 11 488 11 42620 10 6387 7 1524 8 10
ENN [40] 146 11 115 10 493 12 42620 10 6387 7 1524 8 11
LSSm [21] 156 12 124 12 498 12 45490 11 28788 11 4912 11 12
XLDIS [7] 15 2 10 2 25 1 3172 1 298 1 314 2 1
LDIS [8] 18 4 10 2 26 2 3650 3 366 2 352 3 3
IB3 [2] 27 1 20 5 43 3 6103 5 24739 10 4499 10 7
CNN [16] 54 9 57 9 233 9 7592 6 20173 9 1406 7 8
DROP3 [39] 15 2 16 4 43 3 4778 4 3967 6 596 5 4
AP [12] 14 1 8 1 45 5 3270 2 638 3 168 1 2

FINCH [30] 39 6 36 7 109 7 8944 7 1962 4 451 4 5
KM-Fcw 39 6 34 6 108 6 9127 8 2640 5 789 6 5
KM-Fcp 45 8 47 8 125 8 11089 9 6784 8 2211 9 9

Table 2. Evaluation of the instance selection outcome of each method across all
datasets. RI refers to the ranking aggregated over all datasets via averaging. For each
dataset in the headline, we include the original sample pool size.

[ Execution Time T (sec) — Rank ] per method, per dataset

Method Wine Iris B.C. MNIST CIFAR10 CTECH RT

RENN [34] 0.388 10 0.444 12 0.674 8 286 7 504 6 867 7 8
ENN [40] 0.482 11 0.422 10 1.114 10 273 6 529 7 865 6 8
LSSm [21] 0.269 8 0.247 7 0.663 7 5444 10 3119 10 6416 11 10
XLDIS [7] 0.231 6 0.214 4 0.251 5 136 5 086 4 155 1 4
LDIS [8] 0.227 5 0.216 5 0.242 4 109 3 85 3 174 2 3
IB3 [2] 0.248 7 0.231 6 0.263 6 828 8 7449 9 5552 10 7
CNN [16] 1.802 12 0.436 11 4.213 11 3784 9 8275 11 3520 9 11
DROP3 [39] 0.336 9 0.294 9 0.733 9 135267 12 126039 12 162219 12 11
AP [12] 0.225 4 0.247 7 10.623 12 18941 11 1037 8 180 3 6

FINCH [30] 0.077 1 0.081 1 0.100 2 124 4 71 1 376 4 1
KM-Fcw 0.087 2 0.092 2 0.079 1 86 2 79 2 502 5 1
KM-Fcp 0.145 3 0.153 3 0.155 3 81 1 174 5 1790 8 4

Table 3. Evaluation of the execution time (secs) of each method across all considered
datasets. RT refers to the ranking aggregated over all datasets via averaging.

Fcp demonstrate impressive performance, securing top positions in execution
efficiency across multiple datasets. KM-Fcw consistently ranks in the top two
for all datasets, showing particularly strong performance in the MNIST and CI-
FAR10 datasets. KM-Fcp also performs exceptionally well, achieving the fastest
execution time for MNIST and maintaining competitive execution times for other
datasets. In comparison, methods such as LSSm, CNN, and DROP3 show much
higher execution times, particularly in large datasets like MNIST and CIFAR10,
where their times can be several orders of magnitude higher. For instance, LSSm
records an execution time of 5444 seconds for MNIST and 3119 seconds for CI-
FAR10, while DROP3 exhibits the highest execution times overall.
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5.2 Total Ranking

We evaluate the overall performance of the proposed methods according to the
total score S (see equation 8). The obtained results are presented in Table 4,
which reveals several key insights regarding the performance of the methods.

The proposed methods, KM-Fcw and KM-Fcp, demonstrate superior per-
formance across all datasets. Specifically, the class-wise application of FINCH
variant, KM-Fcw, achieved the highest aggregated rank (RS = 1), consistently
securing top positions across the majority of datasets, including the first rank
in CIFAR10 and CALTECH-101 datasets. KM-Fcp also performed exception-
ally well, attaining an overall rank of 3, highlighting its robustness, particularly
in biological datasets like Wine and Iris. In comparison, the baseline methods
exhibited varied performance. FINCH, from which KM-Fcw and KM-Fcp are de-
rived, secured the second overall rank, indicating the foundational strength of
the FINCH method. Methods such as IB3 and XLDIS showed competitive per-
formance with overall ranks of 4 and 5, respectively, suggesting their utility in
specific scenarios but not consistently across all datasets. Conversely, methods
like LSSm and ENN ranked lower (Rs = 12 and 10, respectively), indicating
potential limitations in their applicability or efficiency across diverse datasets.
RENN, while showing moderate performance (Rs = 7), demonstrated variability
across different datasets, reflecting a more specialized than general approach.

5.3 Case Study: Instance Selection on Augmented Datasets

To further evaluate the proposed methodology and to highlight its potential im-
pact, we employ the method proposed by Savathrakis and Argyros [31] as a case
study. In this work, the authors proposed an automated method to convert Hor-
izontal Bounding Boxes (HBBs) into Oriented Bounding Boxes (OBBs) in ship
detection datasets, specifically for HRSC2016 [24] and ShipRSImageNet [43].
Their approach leverages the Segment-Anything Model (SAM) [17] for object
segmentation, followed by morphological filtering and contour detection to ac-
curately compute OBBs from the segmented masks. Given the computed OBBs,
they perform data augmentation by synthesizing unseen ship views at various ori-
entations. The contribution of this proposed augmentation scheme is evaluated
on these two datasets, with a set of top-performing oriented object detectors.

Setup: We apply the proposed instance selection variants to the Increased Size
Object-wise (ISO) augmentation variant from [31], which resulted in the largest
improvements in detection accuracy. Utilizing our proposed methods, KM-Fcw

and KM-Fcp, we perform instance selection in these augmented datasets to train
the object detectors referenced in the original study. We adhere to the train-
ing configurations reported in the original paper, and similar to [31], we use
mean Average Precision (mAP) to evaluate the performance of the detectors.
For our experiments we examined the following detectors, R3Det [42], ReDet [15],
Rotated-RetinaNet [22], and, S2A-Net [14].

In our experiments, we focus exclusively on the ISO augmentation variant
of HRSC2016 [24]. To create the reduced augmented ISO variants, we combine
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[Total Score S — Rank] per method, per dataset

Method Wine Iris B.C. MNIST CIFAR10 CTECH RS

RENN [34] 0.344 7 0.146 12 0.355 7 0.393 8 0.495 4 0.425 8 7
ENN [40] 0.312 11 0.155 10 0.263 11 0.393 7 0.494 5 0.426 7 10
LSSm [21] 0.329 9 0.233 9 0.211 12 0.317 11 0.359 11 0.354 11 12
XLDIS [7] 0.551 4 0.251 6 0.767 1 0.376 9 0.368 10 0.442 5 5
LDIS [8] 0.328 10 0.249 7 0.596 3 0.463 5 0.369 9 0.437 6 6
IB3 [2] 0.501 6 0.361 5 0.573 4 0.682 1 0.395 8 0.402 9 4
CNN [16] 0.168 12 0.149 11 0.264 10 0.426 6 0.404 7 0.448 4 8
DROP3 [39] 0.518 5 0.519 4 0.428 5 0.180 12 0.223 12 0.197 12 8
AP [12] 0.338 8 0.233 8 0.275 9 0.319 10 0.459 6 0.368 10 10

FINCH [30] 0.839 1 0.786 1 0.395 6 0.580 4 0.622 2 0.465 3 2
KM-Fcw 0.834 2 0.775 2 0.654 2 0.661 2 0.634 1 0.518 1 1
KM-Fcp 0.773 3 0.586 3 0.296 8 0.598 3 0.600 3 0.515 2 3

Table 4. Method ranking, under the proposed total score S (Equation 8). RS refers
to the total score ranking aggregated over all datasets via averaging.

two sample definition strategies: (a) we consider the entire scene in the image
samples of ISO, denoted as Sim, and (b) we consider the cropped ship-containing
regions within the images as samples, denoted as Scr. We apply the proposed
methods to both Sim and Scr and generate two sets of selected instances, S′

im

and S′
cr. The final, reduced set, Sfin, is then union of S′

im and the dataset images
containing the samples from S′

cr. The rationale for this sample formulation is to
select samples that are representative of both the overall scene and those that
encompass characteristic ship appearances and orientations.

Results: The results in Table 5 demonstrate that KM-Fcw successfully reduces
the dataset size by approximately 33%. This substantial data reduction results
in minimal loss of detection accuracy, with decreases of less than 3% for the
R3Det and S2A-Net detectors. Despite the significant reduction in data volume,
the ReDet and Rotated-RetinaNet detectors still perform with accuracy drops of
less than 9%. The second proposed variant, KM-Fcp, achieves an 8% reduction
in dataset size while maintaining higher detection accuracy with minor drops
of approximately 1% or even leading to marginal accuracy improvements, as
observed in the case of the Rotated-RetinaNet detector.

When comparing the performance of the instance selection algorithm that
integrates the original FINCH with K-means for final instance subset creation
to our proposed variants, we observe that the combined approach results in a
substantially smaller number of selected instances—approximately 38% fewer
than those selected by the KM-Fcw method. However, this reduction in instance
count is accompanied by a notable decline in detection accuracy, with a decrease
of approximately 10% relative to KM-Fcw. As a final observation, the reduction
in dataset size significantly affects the training duration of the models. Specif-
ically, models trained on the selected subset generated by KM-Fcw converge in
approximately half the time required for training on the original ISO dataset.
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HRSC2016 dataset variants (#samples), mAP (%)

Method ISO [31] ISOKM−Fcw ISOKM−Fcp ISOKM−F

(1455) (571) (1158) (351)

R3Det [42] 88.33 86.12 87.86 76.56
ReDet [15] 87.71 78.73 86.52 75.94
Rotated-RetinaNet [22] 78.43 67.42 78.72 56.15
S2A-Net [14] 89.23 87.53 88.79 79.33

Table 5. mAP scores for object detectors, trained on (a) ISO [31], (b) ISO + KM-
Fcw, referred to as ISOKM−Fcw , (c) ISO + KM-Fcp, referred to as ISOKM−Fcp , and (d)
ISO + (FINCH + K-means), referred to as ISOKM−F . Each dataset is an augmented
variant of HRSC2016 [24]. The value in (·) refers to sample size.

6 Summary

In this work, we introduced two novel instance selection methods, KM-Fcp and
KM-Fcw, which integrate the FINCH and K-means clustering algorithms into
a unified process specifically designed for the task at hand. Our empirical eval-
uations reveal that FINCH emerges as an effective instance selection method
exhibiting high overall performance. Consequently, FINCH can also serve as a
base model for the development of more sophisticated instance selection strate-
gies. Our results indicate that such variants yield improved instance selection
performance relative to other established methods. Finally, we demonstrate the
practical utility of our proposed methods in the context of augmented dataset
size reduction, specifically by eliminating redundant augmentations. In a case
study focusing on an augmentation technique for ship detection in aerial and
satellite imagery, we illustrated that our methods substantially decrease the aug-
mented dataset size while preserving detection accuracy across various detectors.
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